If it's not what You are looking for type in the equation solver your own equation and let us solve it.
20x^2+6x-10=0
a = 20; b = 6; c = -10;
Δ = b2-4ac
Δ = 62-4·20·(-10)
Δ = 836
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{836}=\sqrt{4*209}=\sqrt{4}*\sqrt{209}=2\sqrt{209}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{209}}{2*20}=\frac{-6-2\sqrt{209}}{40} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{209}}{2*20}=\frac{-6+2\sqrt{209}}{40} $
| 7/8y+1/7(y-8)=(y+1)/3 | | √3x+1=4 | | (x-2)^(2/5)=4 | | 3y+44=122 | | 50-3x=20+12x | | 5.1y-4.1y-0.4=5.6+6.4 | | -2|3a-2|=6 | | 15t(t+2)=11t-6 | | 288m^2-200=0 | | y^2=16^(-1÷2)×27^(2÷3) | | |x−4|=−10 | | 4=0.4x-0.6x-2 | | 30-12x=4.9x^2 | | 4+3=(12x-5) | | (14400)+(50^2)=x | | (14400+50^2)=x | | 5/6=15/x−3 | | -1+14x=12x+17x | | 48=5u-2 | | 8/9x+1=1/9x | | (3x+8)2=10 | | 7x2+20x=3 | | 8u-(2-3u)(5u)=15u^2-2u | | 1/5(x-2)=3x-2(x-1)+32/5 | | -8x+12=38 | | 2y-2=4y+4 | | (2)/(7)x+18=8-(3)/(7)x | | 2(d+1)=5d–7 | | 3p+2p-58=0 | | 4+x=16-3x | | 3(4g+6)=2(6g+9 | | 14+2x-4=4x+8-2x |